STRESS ~STRAIN STATE AT THE APEX OF A SLIT
IN THE ANTIPLANE STRAIN OF AN ELASTIC —FLASTIC SOLID

E. I. Shemyakin UDC 539.374

Solutions describing arbitrarily large values of the stresses and strains at the apex of a slit
(solution with a singularity) are considered in the analysis of the stress—strain state of a
mountain mass in the neighborhood of the slit by using an elastic model. An elastic—plastic
model can be considered in place of the elastic model which results in such solutions. When
the elastic —plastic model is chosen correctly, a more exact description of the real values of
the stresses and strains at the slit apex can be expected. The strains must be evaluated in
this problem for which an exact solution in stresses is known for the elastic —plastic model
[1]. The exact solution presented describes the stress—strain state without singularities and
yields an interpretation of the ultimate stresses (forces) as adhesion forces hindering the ex-
pansion of the slit. This permits the proposal of a strength criterion for a material with shear
strains. The solution can be suitable for estimating the size of the focus and energy when
studying mountain shocks or shallow-focus earthquakes.

1. Let an elastic medium be slit along the half-plane xz (x < 0) so that only the displacement compo-
nent W (the projection on the z axis) will be different from zero on the edges of the slit, and will take on
values of equal magnifude but opposite sign on the slit edges. The displacement equals zero for x >0 on
the y =0 axis, the y axis is perpendicular to the plane of the slit, and the origin passes through the apex of
the slit [1].

The strains exz, €y are related to the displacement

aw W Py, 05y (1.1)

e =T BT Gy Tae T oy

and determine the pure shear state; the principal strains are
g1 =1/2,6=0,85=—T/2,T= Ve, + ¢, (1.2)
where T is the principal shear on areas passing through the second principal direction
Exz/ €y = — g P (2, y) (1.3)

and ¥ is the angle made by the second principal direction with the x axis; the second principal direction
is perpendicular to the z axis.

The principal stresses are
o1=T,6,=0,03=—T,T =V 1.2+ 1., (1.4)

where T is the maximum tangential stress at a point acting on the area passing through the second princi-
pal direction of the stress tensor

Txz /Tyz = —12Q (x7 y) (1.5)

and ¢ is the angle made by the second principal direction with the x axis.
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In the elastic strain case it follows from the equilibrium equation
017xz ! dx + '(7Tyz / 6y =90 (1.6)

and (1.1), as well as from Hooke's law

Txz = UEyxz Ty, = U8y, (1.7)

(v is the shear modulus) that W, 74,, T yz are harmonic functions in the
xy plane with the slit along the negative y half-axis.

Fig. 1

The principal directions of the stress and strain tensors in an iso-
tropic solid coincide for elastic strain.

2. Let us consider the solution of the elastic problem
Wz, y)=A4 Vrsin6/2, r= ]/(z—— a)?+y% 0 =arctgy/(z—a) 2.1)
where A, a are constants.

The harmonic function W (%, y) describes elastic displacements of points of the medijum along the z
axis; the slit apex is transferred to the point (a, 0) in the xy plane (Fig. 1). The solution (2.1) corresponds
to the following boundary value problems: the boundary value of the harmonic funection is given for y = 0, the
parabolic shape of the slit is given for x < a

W(z,00=AVr, y=-+0

A 2.2
Wz, 0)=—AVr, y=0 (2.2)
and the displacement W (x, 0) =0 for x.> a.
The stresses and strains corresponding to (2.1)
Ap .8 _ __Ap 0 .
Ta == Bog = — =Sy Ty = Pe = =08 - (2.3)

exhibit an integrable singularity at the point (a, 0) and on the following boundary values on the y= 0 axis,
Txz =0 for X >a and 74, # 0 and assumes values on the slit edges which are equal in magnitude but oppo-
site in sign; 7y, =0 on the slit edges but Tyy # 0 forx>a.

Let us note that according to [1, 2] the magnitude of the maximum tangential stress T is constant on
circles r =const. In particular, for r=a

T=4p/2Va @2.4)
Let us evaluate the discontinuity in the displacement for x = 0,y =0 and the quantity (2.3) there
W,—W_=24V2 (2.5)

The plus and minus signs refer to the upper and lower edges of the slit, while the quantity (2.5) deter-
mines the discontinuity in the displacement on the slit for r=a

€7 = 5 = - 2.6)
= da A/2Ve, y=—0, z<0 (

The property of the elastic solution remarked in (2.4) permits examination of the elastic —plastic
problem. If the quantity T =Tg =const is taken as the elastic limit

Te = Mre (2.7)

where T'g is the ultimate elastic value of the principal shear, and the radius of the plastic zone is taken
equal to a, then the elastic distribution of the stresses and strains within a circle of radius a can be re-
placed by an elastic —plastic field of stresses and strains.

Let us find A from (2.4) and (2.7)
A=2l,Va=2Tp'Va (2.8)
and let us introduce in conformity with (1.5)

Ty = — Te sin Py Tyz = Te cos @ (2.9)
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The quantities (2.9) satisfy the plasticity conditions every-
where within the domain r < a. The equation for ¢ (%, y) follows
from the equilibrium equation (1.6):

f l“‘\ cos ¢ ¢/ dx 4 sin pdg /9y = 0 (2.10)
i““liiili“ s i which has the characteristic
I

y

dy/de=1go 2.11)

X
° From the continuity of the stresses on the elastic plastic
boundary there follows
Fig. 2 b Plrma = tg0/2, 6, =arctg/(x—a)|—a (2.12)
or

@ lrma = Y20 r—a (2.13)

It follows from (2.11) and (2.13) that the stress is described by a centered field, by a fan of rectilinear
characteristics passing through the origin and having the slope 9,/2. Hence the stresses (2.9)

Tz = — LY (x2 + y2)—!"’, Ty, = T (‘xz + yz)-x,/z (2'14)
satisfy the equilibrium equation, the plasticity condition, and the boundary conditions on the circle r= a.

The component is 7xz =0 on the y=0 axis in the plastic domain (Fig. 2) while Tyz =T down to the
singularity (x=0, y=0).
At this point, as ¢ varies in the range from— n/2to #/2 (two subranges (—r/2, 0) and (r/2, 0) are two

continuously interlocking fans of characteristics), the stress ryy varies between T, and ~Tg, while the
stress T vz vanishes at the ends of the interval (—n/2, 7/2). The stresses receive the increments

At = —TAgcoseg :
Aty, = — T Asing’ O/ ATuz=0tg¢ (2.15)

upon passing from one characteristic to another so that the second principal directions of the stress tensors
and the stress increments are orthogonal.

The principal direction of the stress tensor which held upon the onset of the plastic state is conserved
at points of the plastic zone; the loading is "simple" [3]. Under these conditions, isotropic models of the
strain (and the flow theory) type in the problem under consideration result in the corollary that not only the
displacements in the elastic —plastic domain are continuous but so are the strain tensor components., Con-
sequently, we obtain a solution with elevated smoothness in the neighborhood of the elastic —plastic boundary
which does not follow from the formulation of the problem.

3. Let us take the following model of an elastic —plastic solid to determine the strain in the plastic
zone;

1) As the plastic shear strains develop I'c = T =T, let us consider the stress and strain tensors
coaxial (since the stress of the slipplane is conserved in an element).

2) Rupture can occur in some domain upon reaching I'—I', so that the coaxiality condition can be
rejected to be replaced by the condition in the rupture domain [4]. In conformity with the model, let us con-
sider the domain r = @ in which T = T can be realized. From the coaxialify condition

€z / Eyz = Txs / Tyz' (3.1)
and (1.2) and (2.14), there follows an equation [5] for:
20T [ 0z + 40T /oy + T =0 (3.2)

It can be established that this equation is valid for the strain components ez, €yz in the plastic
domain. Integrating (3.2) and subjecting the general solution to the condition I'=T'g at r=a (or on a line)

(2 — 20z + y* = 0). (3.3)

we find
T=2Tz/(@*+§% Z=z/a, J=yla (3.4)
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The strain components exy, Eyz in the plastic domain are
Ty aT,zy o
= - By, = -
(2 + )"

T VEIE @

Ex.

(3.5)
Direct substifution can verify that the strain components satisfy the compatibility condition and the
boundary conditions on the elastic —plastic boundary.
Evaluating the displacements in the plastic zone, we find
AW = e dr eydy = ey de (1 + (84 / &, )(dy / da))
or W=const=W | r = , along the characteristic (2.11), along which
1+ {ry. ! ex)(dy / dz) = 0
It follows from the expression for T in the plastic domain that the quantity is " =const on the circles:
Z—T, /TP +p2=(T./1)% (3.6)
Along these circle
I'=2T./2, 0 <3 <2
It bence follows that on going from I'=T'g to I" > I'e the point of maximum values of I'" is on the bi-
sectrix y=x. If the change in I" along the line y=const in the plastic zone is investigated, then it can be

established that T' varies between I'=T'e and the maximum achievable value of T" on this line for y=x and
then decreases to I'=Tg.

This means that if the problem of a moving slit is examined, then it is necessary to go over to equa-
tions for the unloading domain on the line y=x {6].

If the domain in which I" = T’y is not introduced, then the solution (3.4) describes the singularity at the
point x=0, y=0 near which the principal shear is (at y=0, say)

/T, =2/z

Hence, let us introduce the domain I =T; and let us consider elements of the medium therein can be
ruptured. I follows from (3.4) and (3.6) that the condition I =T is satisfied on the circle
Z—a)p+i2=c?a=T,/T, <1 (3.7)
The stress distribution everywhere in the domain r < ¢, including within the circle (3.7) as well, re-

mains as before because of the equilibrium equation and the plasticity condition [see (2.14)]. To find the
strain distribution, the "rupture® condition I'=Tg,or

Ve +e.=T. (3.8)
will be used together with the compatibility condition (1.1).

The condition (3.8) closes the system of equations in the rupture domain in place of the coaxiality
condition (3.1) in the plastic domain.
Let us introduce (y > 0)
g,, = 0W / 0z = T, cos¥y, &, = 0W /8y (3.9)

and we obtain from the condition (1.1)
cos Py 0P, / 0x - sinp, 6, / Oy = 0 (3.10)
which agrees with (2.10) and has the characteristic
Oy | 0x = tg ’llJ; (3.11)

Here 3, =9 + n/2, i.e., characteristics (3.11) and (2.11) are orthogonal at points of the contour I'=T¢,
where ¢ = ¥ from the side of the elastic—plastic domain. The condition of continuity of the displacements
would be satisfied on the contour I'=T';. The displacements are calculated from the elastic—plastic domain
direction on this contour. It follows from (3.9) that W=const along the characteristic (3.11), i.e., it is a
line of discontinuity for @ ,=const, and §,=1/2 (¢ =0). These facts permit the construction of a solution
for the strain component in the form of two centered fields with common apex (singularity) at the point
(2, 0) (Fig. 2).
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Fory >0 (7 = ¢, > 7/2) we have

T, (z —20) Ty

— et AN — __ 3.12
VR T Ve 312
and for y >0 (0 < )y < 7/2)
T, (7 —24) B r,g
Ex: = W——ﬁ » &y, = V(m (3.13)
and the displacements on both sides of the line y =0 on the segment 0 < x = 20 are
W=-4TaV@— 20"+ y (3.14)

The plus and minus signs refer to points of the domain with ordinates y = 0, respectively.

The following graphical method of calculating the stresses and strains in the domain T'g =const can be
mentioned. The value of the stress can be taken from the contour r= g to the point (x, y) along the charac-
teristic (2.11), and the value of the displacement and strain from the contour (3.7) along the characteristic

(3.11).

Indicated in Fig. 2 is the shape which the slit has in the presence of an elastic—plastic hinge and with
a description of the possible rupture upon reaching I'=T,. Thus, in the plastic domain I';= T' = T'; the
displacement is W=0 down to the point (2, 0, @ < 1). The stress intensity is T, on the discontinuous line.
Opening of the slit to an angle equal to I'c at the vertex occurs on the section 0 < X < 2c so that the quan-~
tity W =W, —W_ edquals4al'g =atthe origin. Thevalue ofthis quantity can be used as a rupture criterion
2, 7]. The constancy of T =Tg on this section can be interpreted as the constancy of the adhesion force
intensity which retains the edges together with the opening of the slit at W=W,.

The elastic—plastic solution constructed is of interest in that it permits analysis of the flow law when
the coaxiality condition is spoiled: agreement between the principal directions of the stress and strain ten-
sors holds up to the critical values I'=T, in this problem, while the maximum tangential stress and the
principal shear have the greatest values on different areas at I'=T'¢c. This means that the flow law should
be represented as a line in the space T, T°, 9, where g is the angle of the difference between the principal
directions [3].

By studying the stress —strain state of elements on the line |y| = const it is possible to indicate their
sequential state along the line |y| < @ and back for the passage from elements ahead of the slit apex x >0
to elements near the slit edges.

The simplest version I'e=TI'g, an ideal *brittle” material, canbe examined in the model of anelastic—
plastic solid with the strength criterion T'=T',. Inthis case, the condition T =T, is reached on the circle
r= g and all the results for the *rupture™ domain are extended to the circle r=a. This solution is suitable
for a slowly moving slit where in each element near the slit (y < a) bypassed by the slit apex the following
cycle holds: loading by the elastic law to I'x =T'; and unloading by the elastic law. This solution is meaning-
ful for an estimate of the size of the focus and energy in mountain socks and earthquakes.

To investigate the stability of the material in the domain T =T'¢, let us evaluate the work of the stress
increments on the strain increments [6]

Aty Aoy, + ATyz Asyz = T cos (¢ — P)AQAYP

We will have ¢ = ¢ (stable equilibrium) on the boundary with the domain I'=T¢ and 3 =0 (unstable
equilibrium) at the ends of the segment 0 < X < 2¢, where ¢ =0, ¥ =n/2 or ¢ =7/2. On this basis, the de-
duction can be made that compliance with the criterion I'=I'¢ in the unstable equilibrium state is neces-
sary for the origination of rupture.
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